Can Leaders Leverage Digital Technology to Drive Environmental Sustainability?

We are well aware that in recent times, climate change has impacted the economic, social, and environmental systems across the planet, and unfortunately, its consequences are expected to continue in the future.

It has been witnessed that cities in the United States, Philippines, China, and Madagascar are facing warmer, drier, and wetter climates, resulting in natural hazards; these extreme weather events have affected 145,000 human fatalities across cities, as they invite seasonal diseases, drought, famine, and even death.

Therefore, with these adversities in mind, meteorological departments and governments across the country have started taking advantage of technologies such as artificial intelligence (AI) and machine learning (ML) that have the potential to protect the environment.

Air Quality Monitoring

The precise real-time air quality assessments are based on data analysis from smart sensors, enabling scientists and engineers to take prompt action in areas with high pollution levels. The ML models also come in handy for forecasting potential pollution levels based on various factors and, thus, taking proactive actions to mitigate air pollution.

Read about The Convergence of Artificial Intelligence and Sustainability in the IT Industry

Industry Leaders’ Perspectives on AI and Environment Sustainability

When it comes to introducing AI-driven sustainability initiatives, leaders should ensure that all stakeholders are on board with the idea and must collaborate and think about this issue as a collective thing.

Having a long-term vision is essential, as companies sometimes focus on immediate benefits that will help increase profit in the next quarter. But when companies start incorporating environmental, societal, and financial variables, it will help C-suites get a clear picture and give thought to the long-term implementation of sustainability and technology.

For any environmental and sustainability initiative, the C-suites must have a strategic vision with robust leadership and stakeholders’ commitment to developing a more resistant and structured plan that will help in creating sustainable business with improved outcomes for the customer and society.

Read about The Role of CTOs in Integrating the Environmental, Social, and Governance Journey

The role of AI in environmental sustainability will have a wide role in the future, as it will not only involve handling and analyzing more complex datasets but also enabling environmental prediction.

Similarly, the integration of smart technology with the Internet of Things (IoT) will allow organizations to collect data and focus on enhancing environmental monitoring and resource management. To accelerate the development and adoption of AI-based solutions for environmental challenges, enterprises need to collaborate with every government, business, academia, and NGO at both local and global levels, as their expertise and knowledge will help in fostering innovation and investing smartly in tailored environmental applications.

Ultimately, the implementation of AI in addressing environmental challenges is just one part of the effort to transition to a more sustainable society.

 To Know More, Read Full Article @ https://ai-techpark.com/digital-leadership-for-eco-sustainability/ 

Related Articles -

Spatial Computing Future of Tech

collaborative robots in healthcare

Trending Categories - Mobile Fitness/Health Apps/ Fitness wearables

How The Concept of Digital Twins Can Be Used Within AIOps to Develop Self-Healing Closed Loop Ecosystems

Digital twins have become an influential technology in recent years, particularly in manufacturing or heavy industries such as transportation or energy. A simple definition of a digital twin is a faithful, detailed digital model of a real-world system or process – anything from a consumer product prototype to an entire factory or telecommunications network.  

Digital models make great testing grounds, one significant advantage being that systems can be tested virtually, with any number of ‘what if’ scenarios being run, outcomes examined and changes to the virtual version of the system made instantaneously. It’s a quicker, cheaper, lower-stakes way to test those changes as opposed to making them in the physical version. This parallels software’s move towards agile development, with its smaller, faster feedback loops.

AIOps as a Digital-to-Digital Twin

Interestingly, the concept of digital twins can be a powerful tool within the field of artificial intelligence for IT Operations (AIOps) to develop self-healing closed-loop ecosystems.

To elaborate, a ‘classic’ digital twin is a representation of a piece of physical reality, and very accurate in emulating and predicting the behavior of mechanical components. For example, a jet engine, a manufacturing line, or even a human heart. This digital representation requires a steady flow of data to stay current. It isn’t a closed loop. In addition, any changes that need to be incorporated into the original version of the twin need to be manually added. This creates a delay and the possibility of errors, which can compromise the digital twin’s speed and agility. That in itself limits its value, because the ability to respond quickly to change is a key for success in today’s highly agile business environment.  

By contrast, IT production environments exist solely in a digital reality. While they obviously contain physical elements such as computers, mobile devices, servers, cables and so on, those

only come alive when connected by digital components such as software and data flows. Driven by AI algorithms that enable intelligent automation, digital twins work within AIOps for IT operations, representing the entire IT environment, including hardware, software, and their interactions. This translates to the self-management of IT environments, the ability to predict incidents, offer ways to prevent them, and even suggest improvements when permanently resolving a problem requires a change in the IT environment’s design or architecture.

Taking the principles of digital twins and integrating that into AIOps, organizations can move beyond reactive problem-solving and achieve a proactive, self-healing closed-loop ecosystem that can detect and respond to IT issues in real-time. This approach minimizes manual intervention and allows IT teams to proactively address problems before they impact end-users.

Only digital-to-digital can close the loop seamlessly. Of course, all of this does not mean that humans will lose control of IT as it remains a software platform controlled by IT staff. It does, however, free up IT expertise from repetitive tasks to focus on more complex high value tasks.

To Know More, Read Full Article @ https://ai-techpark.com/digital-twins-for-self-healing-aiops/ 

Related Articles -

Generative AI in Virtual Classrooms

Guide to the Digital Twin Technology

Explore Category - Threat Intelligence & Incident Response

Is Spatial Computing The Future of Technology?

In the digital era, spatial computing (SC) is a rapidly evolving field as we have started to interact with humans and machines in three-dimensional spaces. Technologies under this umbrella, including augmented reality (AR) and virtual reality (VR), can redefine the enterprise’s interaction with these gadgets and unlock a new realm of possibilities and opportunities.

Today, spatial computing is no longer a vision but a reality for finding the correct applications in numerous fields, especially in the business world.

In this AI Tech Park article, we will take a closer look at how spatial computing is the new solution for IT professionals who are looking to improve their data analysis and process optimization.

The Technology Behind Spatial Computing

Spatial computing has emerged as an interactive technology that can merge the digital and physical worlds, allowing users to interact with computers in an immersive and seamless manner.

With the help of a wide range of technologies, such as artificial intelligence (AI), camera sensors, computer vision, the Internet of Things (IoT), AR, VR, and mixed reality (MR), IT professionals can develop new technologies, a seamless business process, and better data analysis to optimize the process.

This technology employs numerous devices and hardware components to provide an interactive customer experience. A few well-known devices in the business world are smart glasses such as Apple Vision Pro and Meta Quest 3, which interface virtual objects with the real world.

Another interactive spatial computing technology is the depth camera by Microsoft Azure Kinect and the Intel RealSense D400 series, which captures the depth of the physical world and creates virtual objects that will fit into the real world.

Spatial computing leverages numerous technologies, such as machine learning (ML), advanced sensors, and computer vision, to understand and interact with the physical world.

Computer vision, also a subset of AI, enables computers to process and understand visual information by tracking users’ movements and understanding the environment. This allows IT professionals to create a digital representation of the physical world, which can be further used to overlay digital content onto the real world.

ML is another key technology in spatial computing that IT professionals use to train computers to understand and predict user behavior. For instance, if the user reaches to touch a digital object, the computer needs to understand this information and take action to respond accordingly and further predict the user’s future actions.

Sensors are also an essential component of spatial technology as they provide the data that the computer needs in the physical world, which includes the user’s behavior, environment, and interaction with digital content.

Spatial computing is indeed considered the future of technology, as it has the potential to revolutionize any industry by enabling human interaction with machines and the environment. This innovative blend of the virtual and physical worlds provides immersive experiences and boosts productivity. At its core, spatial computing integrates MR, VR, and AR to bridge the gap between the real world and the digital realm, which helps shape the future of technology.

To Know More, Read Full Article @ https://ai-techpark.com/spatial-computing-in-business/ 

Related Categories -

CIOs to Enhance the Customer Experience

Transforming Business Intelligence Through AI

News - Storj announced accelerated growth of cloud object storage solution

Cristina Fonseca, Head of AI, Zendesk – AITech Interview

What challenges have you faced in implementing AI at Zendesk and how have you overcome them?

I believe that across the industry, businesses have made AI hard to make, understand and use. Up until OpenAI released ChatGPT it was accepted that AI was a highly technical field that required long implementation processes and specialised skills to maintain. But AI should be easy to understand, train and use – that’s something we’re very passionate about at Zendesk, and we absolutely need to have that into account when we develop new features.

AI is a shiny, new tool but those looking to implement it must remember that it should be used to solve real problems for customers, especially now with the advent of generative AI. We also need to remind ourselves that the problems we are solving today have not changed drastically in the last few years.

As AI becomes a foundational tool in building the future of software, companies will have to develop the AI/ML muscle and enable everyone to build ML-powered features which requires a lot of collaboration and tools. An AI strategy built upon a Large Language Model (LLM) is not a strategy. LLMs are very powerful tools, but not always the right one to use for every single use case. That’s why we need to assess that carefully as we build and launch ML-powered features.

How do you ensure that the use of AI is ethical and aligned with customer needs and expectations?

As beneficial as AI is, there are some valid concerns. At Zendesk, we’re committed to providing businesses with the most secure, trusted products and solutions possible. We have outlined a set of design principles that sets a clear foundation for our use of generative AI for CX across all components, from design to deployment. Some examples of how we do this include ensuring that training data is anonymised, restricting the use of live chat data, respecting data locality, providing opt-outs for customers, and reducing the risk of bias by having a diverse set of developers working on projects.

What advice do you have for companies looking to incorporate AI into their customer experience strategy?

At Zendesk, we believe that AI will drive each and every customer touchpoint in the next five years. Even with the significant progress ChatGPT has made in making AI accessible, we are still in the early stages and must remain grounded in the fact that LLMs today still have some limitations that may actually detract from the customer experience. When companies use AI strategically to improve CX, it can be a powerful tool for managing costs as well as maintaining a customer connection. Having said that, there is no replacement for human touch. AI’s core function is to better support teams by managing simpler tasks, allowing humans to take on more complex tasks.

While it’s important to move with speed, companies seeking to deploy AI as part of their CX strategy should be thoughtful in the way it’s implemented.

To Know More, Read Full Interview @ https://ai-techpark.com/implementing-ai-in-business/ 

Related Articles -

Democratized Generative AI

Deep Learning in Big Data Analytics

Other Interview - AITech Interview with Neda Nia, Chief Product Officer at Stibo Systems

Major Trends Shaping Semantic Technologies This Year

As we have stepped into the realm of 2024, the artificial intelligence and data landscape is growing up for further transformation, which will drive technological advancements and marketing trends and understand enterprises’ needs. The introduction of ChatGPT in 2022 has produced different types of primary and secondary effects on semantic technology, which is helping IT organizations understand the language and its underlying structure.

For instance, the semantic web and natural language processing (NLP) are both forms of semantic technology, as each has different supportive rules in the data management process.

In this article, we will focus on the top four trends of 2024 that will change the IT landscape in the coming years.

Reshaping Customer Engagement With Large Language Models

The interest in large language models (LLMs) technology came to light after the release of ChatGPT in 2022. The current stage of LLMs is marked by the ability to understand and generate human-like text across different subjects and applications. The models are built by using advanced deep-learning (DL) techniques and a vast amount of trained data to provide better customer engagement, operational efficiency, and resource management.

However, it is important to acknowledge that while these LLM models have a lot of unprecedented potential, ethical considerations such as data privacy and data bias must be addressed proactively.

Importance of Knowledge Graphs for Complex Data

The introduction of knowledge graphs (KGs) has become increasingly essential for managing complex data sets as they understand the relationship between different types of information and segregate it accordingly. The merging of LLMs and KGs will improve the abilities and understanding of artificial intelligence (AI) systems. This combination will help in preparing structured presentations that can be used to build more context-aware AI systems, eventually revolutionizing the way we interact with computers and access important information.

As KGs become increasingly digital, IT professionals must address the issues of security and compliance by implementing global data protection regulations and robust security strategies to eliminate the concerns.  

Large language models (LLMs) and semantic technologies are turbocharging the world of AI. Take ChatGPT for example, it's revolutionized communication and made significant strides in language translation.

But this is just the beginning. As AI advances, LLMs will become even more powerful, and knowledge graphs will emerge as the go-to platform for data experts. Imagine search engines and research fueled by these innovations, all while Web3 ushers in a new era for the internet.

To Know More, Read Full Article @ https://ai-techpark.com/top-four-semantic-technology-trends-of-2024/ 

Related Articles -

Explainable AI Is Important for IT

Chief Data Officer in the Data Governance

News - Synechron announced the acquisition of Dreamix

How will the “AI boom” affect autonomous vehicles?

Another day, another AI headline. Meta has introduced new AI chatbots, embodied by celebrities, in a bid to mix information with entertainment. Amazon has invested up to $4B in its rival, Anthropic; and Google has launched Gemini, to compete with GPT-4. That’s just some of the AI stories within the last quarter involving three of the most influential companies in the technology sector.

Artificial Intelligence is booming. Its rapid development in 2023 has unlocked a wave of new possibilities and opportunities for the AI and machine learning ecosystem. But one of its beneficiaries isn’t. While AI stock has never been higher, we’ve not seen this optimism translate into the autonomous vehicle (AV) sector. This makes little sense. The development of AI and the future of autonomous vehicles is inextricably linked – the former quite literally powers the latter. So why is there this disparity in market confidence between the two sectors? And what does the surge in artificial intelligence mean for the AV sector as a whole?

The field of autonomous vehicles (AVs) has captured our imagination for decades. While self-driving cars are still a work in progress, the recent boom in artificial intelligence (AI) has the potential to be a game-changer. Let's explore how advancements in AI could transform the landscape of autonomous vehicles.

One of the most significant impacts of AI will be on the decision-making capabilities of AVs. AI algorithms, trained on vast amounts of driving data, can potentially react to complex situations faster and more consistently than human drivers.

The AV crystal ball

The challenges of AV at present are those of AI’s future. One of these big challenges revolves around data. An advanced driver assistance system (ADAS) or autonomous driving (AD) system relies on sensors (such as cameras and radar) to ‘see’ the world around them. The data these sensors collect is processed by machine learning to train an AI algorithm, which then makes decisions to control the car. However, handling, curating, annotating and refining the vast amounts of data needed to train and apply these algorithms is immensely difficult. As such, autonomous vehicles are currently pretty limited in their use cases.

AI developers outside the AV world are similarly drowning in data and how they collate and curate data sets for training is equally crucial. The issue of encoded bias resulting from skewed, low quality data is a big problem across sectors: bias against minorities has been found in hiring and loans, where in 2019 Apple’s credit card was investigated over claims its algorithm offered different credit limits for men and women. As applications of AI only continue to increase and reshape the world around us, it’s critical that the data feeding algorithms are correctly tagged and managed.

In other sectors, errors are more readily tolerated, even while bias harms. Consumers may not mind the odd mistake here and there when they enlist the help of ChatGPT, and even find these lapses amusing, but this leniency won’t last long. As reliance on new AI tools increases, and concern over its power grows, ensuring applications meet consumer expectations will be increasingly important. The pressure to close the gap between promise and performance is getting bigger as AI moves from science fiction to reality.

To Know More, Read Full Article @ https://ai-techpark.com/how-will-the-ai-boom-affect-autonomous-vehicles/ 

Related Articles -

Transforming Business Intelligence 

Edge Computing Trends

News - Storj announced accelerated growth of cloud object storage solution

The Crucial Role of Algorithm Auditors in Algorithm Detection and Mitigation

In our increasingly data-driven world, algorithms play a significant role in shaping our lives. From loan approvals to social media feeds, these complex programs make decisions that can have a profound impact. However, algorithms are not infallible, and their development can be susceptible to biases. This is where algorithm auditors step in, acting as crucial watchdogs to ensure fairness and mitigate potential harm.

Algorithm auditors possess a unique skillset. They understand the intricacies of artificial intelligence (AI) and machine learning (ML), the technologies that power algorithms. But their expertise extends beyond technical knowledge. Auditors are also well-versed in ethics and fairness principles, allowing them to identify biases that might creep into the data or the algorithms themselves.

With the use of algorithms becoming widespread, the potential for algorithm bias has also impacted numerous decision-making processes, which is a growing concern in the IT sector.

The phenomenon of algorithm bias starts when the algorithms generate results that are systematically and unfairly skewed towards or against certain groups of people. This can have serious consequences, such as race discrimination, gender inequality, and the development of unfair disadvantages or advantages among citizens.

Therefore, to address this concern, the role of algorithm bias auditors has emerged, who are responsible for evaluating algorithms and their outputs to detect any biases that could impact decision-making.

In this exclusive AI TechPark article, we will comprehend the concept of algorithm bias and acknowledge the role of algorithm bias auditors in detecting algorithm bias.

The Role of Algorithm Auditors to Detect Algorithm Bias

According to a global survey, it has been witnessed that more than 56% of CIOs face issues related to the black box, algorithm bias, and privacy protection that create an adverse effect on citizens. Looking at these concerns, along with data privacy issues, IT organizations acknowledge the need for the role of an algorithm auditor.

Algorithm auditors play an essential role in ensuring that algorithms are unbiased and fair; therefore, they have to have a good understanding of ethics and fairness in artificial intelligence (AI) and machine learning (ML), along with practical knowledge of how algorithms can impact the lives of common people. They need to collaborate with developers and data scientists to review algorithms and ensure that they are fair, transparent, and explainable.

Algorithm auditors also use numerous tools to identify the factors associated with AI and ML algorithms’ results and understand the underlying data that has inherent algorithm bias. They can further execute periodical reviews to determine the fairness of the model after it is deployed in the real world. In addition to recognizing the problems, algorithm auditors also provide recommendations on how to make the model more ethical and explainable by implementing ethical frameworks.

To Know More, Read Full Article @ https://ai-techpark.com/the-crucial-role-of-algorithm-auditors-in-detection-and-mitigation/ 

Related Articles -

Generative AI Applications and Services

Mental Healthcare with Artificial Intelligence

News - Marvell launches products, technology and partnerships at OFC 2024

Beyond Numbers: Unveiling the Power of Data Literacy in the Digital Age

As we have entered the digital era, data and analytics strategies (D&A) have become important, as these technologies can transform any business during a massive data spike. According to global research, it was observed that around 2.5 quintillion bytes of data are produced by IT companies every day; therefore, to understand the importance of data, every employee must be data literate.

For a better understanding of data, the Chief Data Officers (CDOs) play an important role in making every employee data literate, i.e., able to understand, share, and have meaningful insight into data.  

With this mindset, organizations can seamlessly adopt emerging and existing technologies and transform their business outcomes across all departments while fostering quality decision-making, innovation, and a better customer experience. The CDOs

In this exclusive AI TechPark article, we will discuss the evolution of data literacy and how it can transform any organization into a data-literate one.

Read more about The Value of the Chief Data Officer in the Data Governance Framework

The Evolution of Data Literacy in the Technological Era

In the past few decades, data literacy has experienced a significant transformation with the introduction of new technologies and the explosion of data. This shift has ignited from traditional data analysis to a modern era of big data that has redefined the way organizations can make data-driven decisions.

To analyze data, data scientists and analysts were confined to basic statistics and simple datasets. Even to analyze the data, data professionals needed more tools, narrow, small-scale datasets, and internal data sources. However, in the late 20th century, there were a lot of technological advancements, such as the introduction of data storage, big data, and cloud computing. This helped data scientists collect and process massive amounts of data from complex, unstructured datasets that could be further analyzed for deeper insight.

Read more about Navigating the Future With the Integration of Deep Learning in Big Data Analytics

As a result of these technological advancements, the power of data has become a center point for developing strategic planning and seamlessly operating business efficiency in the IT industry. Thus, data literacy becomes equally important to developing a data-literate workforce and ensuring that professionals harness the full potential of data for competitive advantage in the data-driven landscape.

Data is necessary, empowering at both individual and organizational levels by creating a pathway to harness real-world data-driven decision-making and data-driven organizational strategy.

In an era where artificial intelligence, data analysis, machine learning, and big data are driving critical business decisions and the ability to steer through complex datasets and extract business insights, data literacy is the epitome of enhancing employability, making informed business decisions, driving innovation, and gaining a competitive edge.

To Know More, Read Full Article @ https://ai-techpark.com/understanding-data-literacy-in-the-digital-age/ 

Visit Related Categories

IOT Smart Cloud

Threat Intelligence & Incident Response

News - Marvell launches products, technology and partnerships at OFC 2024

The Evolution of AI-Powered Wearables in the Reshaping Healthcare Sector

The amalgamation of artificial intelligence (AI) and wearable technology has transformed how healthcare providers monitor and manage patients’s health through emergency responses, early-stage diagnostics, and medical research.

Therefore, AI-powered wearables are a boon to the digital era as they lower the cost of care delivery, eliminate healthcare providers’ friction, and optimize insurance segmentations. According to research by MIT and Google, these portable medical devices are equipped with large language models (LLMs), machine learning (ML), deep learning (DL), and neural networks that provide personalized digital healthcare solutions catering to each patient’s needs, based on user demographics, health knowledge, and physiological data.

In today’s article, let’s explore the influence of these powerful technologies that have reshaped personalized healthcare solutions.

Integration of AI in Wearable Health Technology

AI has been a transforming force for developing digital health solutions for patients, especially when implemented in wearables. However, 21st-century wearables are not just limited to AI but employ advanced technologies such as deep learning, machine learning, and neural networking to get precise user data and make quick decisions on behalf of medical professionals.

This section will focus on how ML and DL are essential technologies in developing next-generation wearables.

Machine Learning Algorithms to Analyze Data

Machine learning (ML) algorithms are one of the most valuable technologies that analyze the extensive data gathered from AI wearable devices and empower healthcare professionals to identify patterns, predict necessary outcomes, and make suitable decisions on patient care.

For instance, certain wearables use ML algorithms, especially for chronic diseases such as mental health issues, cardiovascular issues, and diabetes, by measuring heart rate, oxygen rate, and blood glucose meters. By detecting these data patterns, physicians can provide early intervention, take a closer look at patients’s vitals, and make decisions.

Recognizing Human Activity with Deep Learning Algorithms

Deep learning (DL) algorithms are implemented in wearables as multi-layered artificial neural networks (ANN) to identify intricate patterns and find relationships within massive datasets. To develop a high-performance computing platform for wearables, numerous DL frameworks are created to recognize human activities such as ECG data, muscle and bone movement, symptoms of epilepsy, and early signs of sleep apnea. The DL framework in the wearables learns the symptoms and signs automatically to provide quick solutions.

However, the only limitation of the DL algorithms in wearable technology is the need for constant training and standardized data collection and analysis to ensure high-quality data.

To Know More, Read Full Article @ https://ai-techpark.com/ai-powered-wearables-in-healthcare/

Read Related Articles:

Cloud Computing Chronicles

Future of QA Engineering

How Artificial Intelligence is RevolutionizingSocial Media Marketing

Social media has transformed marketing. Platforms like Instagram with its 2 billion subscribers allow businesses to connect directly with customers and build their brands through compelling visual storytelling. However, the highly competitive and fast-paced nature of social media also presents challenges. This is where artificial intelligence (AI) comes in. AI technologies are revolutionizing social media marketing, providing data-driven insights and automation that help brands cut through the noise and thrive on social media.

How Artificial Intelligence Helps in Social Media Marketing

Artificial Intelligence is the next big thing in the world of technology and is poised to set forth the course of digital environments in the coming decades. Here below we will see how artificial intelligence is paving the way ahead:

Understanding Your Audience With AI

One of the foundational principles of marketing is understanding your target audience intimately so you can create relevant and engaging content. AI makes discovering audience interests and behaviors easy. Tools like Facebook Analytics, Sprout Social, and Rafflekey utilize machine learning algorithms to reveal demographic data, top-performing content, post timings, picking up winners, and more. These AI-powered insights help you fine-tune Instagram content to match what your followers respond to. Instagram influencers have massively benefited leveraging AI to create instagram giveaway ideas that helps them in boosting their persona and brand.

AI takes audience analysis even further with sentiment analysis and predictive analytics. Sentiment analysis uses natural language processing to determine how audiences feel about your brand by analyzing emotions like joy, surprise, anger, etc. in user-generated content. Predictive analytics examines past performance data to forecast future outcomes. This helps you stay ahead of trends and optimize social media initiatives for maximum impact.

Generating High-Quality Visual Content With AI

Visual storytelling is central to success on Instagram. But constantly producing fresh, eye-catching photos and videos can be challenging. AI creativity tools expand what’s humanly possible by autonomously generating unique visual content.

For example, tools like Canva, Over, and Recite leverage AI to transform text prompts into stunning social media graphics in just seconds. Adobe’s Sensei AI identifies aesthetically pleasing image compositions and automatically adjusts parameters like lighting, color balance, and cropping. For video, generative AI can craft natural voiceovers for explainer videos based on your script.

These AI creativity enhancements remove friction from design and allow you to produce loads of on-brand, high-quality visual content to feed Instagram’s voracious appetite.

To Know More, Read Full Article @ https://ai-techpark.com/the-role-of-ai-in-social-media-marketing/ 

Read Related Articles:

Chief Data Officer in the Data Governance

Rise of Low-Code and No-Code

seers cmp badge