Unpacking the Hype of Retrieval-Augmented Generation (RAG)

You may have seen the acronym ‘RAG’ floating around in relation to artificial intelligence. What the heck is RAG and why is everyone talking about it?

RAG stands for Retrieval-Augmented Generation and combines a generative model with a retrieval system to enhance or augment (as the name suggests) AI responses with more accurate and current data. So this means there are two portions to it: the generative model, which generates human-like text, and the retrieval system, which supplements the generative model’s output.

As with any emerging technology, before implementing it within your organization, it’s wise to understand it, as well as its potential benefits, and truly consider why you should – or should not – use it. Let’s explore what RAG is and the impact it can have on your business.

The RAG Process

There are four components to the process flow of a RAG process: query processing, retrieval, integration, and generation. These components are what allow you to truly specialize a Large Language Model (LLM) with a knowledge base of your choosing..

Retrieval: The retriever is a component that searches and selects relevant information from a large database or knowledge base based on the input query.

Knowledge Base: This is the collection of data or information sources that the retriever accesses to find content relevant to the query.

Re-ranker/Selector: The re-ranker or selector evaluates and chooses the best output from the generated responses, ensuring relevance and quality.

Generation: This component integrates the retrieved information into the language generation process, synthesizing it with the input to produce a coherent response.

Now that we’ve outlined the process RAG uses to produce more effective AI responses, let’s examine why RAG is more effective than other models.

Benefits of RAG

There are numerous benefits of implementing RAG, but the major benefits include preventing hallucination, control over the knowledge base used and flexibility in updating information like price changes or product stock.

Preventing Hallucination: RAG reduces the occurrence of generating false or nonsensical information by grounding responses in verified data, enhancing the accuracy and reliability of AI-generated content, crucial for areas where precision is vital.

Control Over the Models Knowledge: RAG allows precise control over the information sources, enabling organizations to tailor content generation to their specific standards and requirements, thus ensuring consistency and alignment with organizational values.

Flexibility on Updating Information: With RAG’s ability to process real-time data, it excels in applications requiring current information, such as AI sales agents and market analysis, ensuring that businesses can offer accurate, timely data to their clients.

To Know More, Read Full Article @ https://ai-techpark.com/why-everyone-is-raving-about-rag/ 

Related Articles -

Digital Technology to Drive Environmental Sustainability

Deep Learning in Big Data Analytics

Trending Category - Patient Engagement/Monitoring

Cristina Fonseca, Head of AI, Zendesk – AITech Interview

What challenges have you faced in implementing AI at Zendesk and how have you overcome them?

I believe that across the industry, businesses have made AI hard to make, understand and use. Up until OpenAI released ChatGPT it was accepted that AI was a highly technical field that required long implementation processes and specialised skills to maintain. But AI should be easy to understand, train and use – that’s something we’re very passionate about at Zendesk, and we absolutely need to have that into account when we develop new features.

AI is a shiny, new tool but those looking to implement it must remember that it should be used to solve real problems for customers, especially now with the advent of generative AI. We also need to remind ourselves that the problems we are solving today have not changed drastically in the last few years.

As AI becomes a foundational tool in building the future of software, companies will have to develop the AI/ML muscle and enable everyone to build ML-powered features which requires a lot of collaboration and tools. An AI strategy built upon a Large Language Model (LLM) is not a strategy. LLMs are very powerful tools, but not always the right one to use for every single use case. That’s why we need to assess that carefully as we build and launch ML-powered features.

How do you ensure that the use of AI is ethical and aligned with customer needs and expectations?

As beneficial as AI is, there are some valid concerns. At Zendesk, we’re committed to providing businesses with the most secure, trusted products and solutions possible. We have outlined a set of design principles that sets a clear foundation for our use of generative AI for CX across all components, from design to deployment. Some examples of how we do this include ensuring that training data is anonymised, restricting the use of live chat data, respecting data locality, providing opt-outs for customers, and reducing the risk of bias by having a diverse set of developers working on projects.

What advice do you have for companies looking to incorporate AI into their customer experience strategy?

At Zendesk, we believe that AI will drive each and every customer touchpoint in the next five years. Even with the significant progress ChatGPT has made in making AI accessible, we are still in the early stages and must remain grounded in the fact that LLMs today still have some limitations that may actually detract from the customer experience. When companies use AI strategically to improve CX, it can be a powerful tool for managing costs as well as maintaining a customer connection. Having said that, there is no replacement for human touch. AI’s core function is to better support teams by managing simpler tasks, allowing humans to take on more complex tasks.

While it’s important to move with speed, companies seeking to deploy AI as part of their CX strategy should be thoughtful in the way it’s implemented.

To Know More, Read Full Interview @ https://ai-techpark.com/implementing-ai-in-business/ 

Related Articles -

Democratized Generative AI

Deep Learning in Big Data Analytics

Other Interview - AITech Interview with Neda Nia, Chief Product Officer at Stibo Systems

The Evolution of AI-Powered Wearables in the Reshaping Healthcare Sector

The amalgamation of artificial intelligence (AI) and wearable technology has transformed how healthcare providers monitor and manage patients’s health through emergency responses, early-stage diagnostics, and medical research.

Therefore, AI-powered wearables are a boon to the digital era as they lower the cost of care delivery, eliminate healthcare providers’ friction, and optimize insurance segmentations. According to research by MIT and Google, these portable medical devices are equipped with large language models (LLMs), machine learning (ML), deep learning (DL), and neural networks that provide personalized digital healthcare solutions catering to each patient’s needs, based on user demographics, health knowledge, and physiological data.

In today’s article, let’s explore the influence of these powerful technologies that have reshaped personalized healthcare solutions.

Integration of AI in Wearable Health Technology

AI has been a transforming force for developing digital health solutions for patients, especially when implemented in wearables. However, 21st-century wearables are not just limited to AI but employ advanced technologies such as deep learning, machine learning, and neural networking to get precise user data and make quick decisions on behalf of medical professionals.

This section will focus on how ML and DL are essential technologies in developing next-generation wearables.

Machine Learning Algorithms to Analyze Data

Machine learning (ML) algorithms are one of the most valuable technologies that analyze the extensive data gathered from AI wearable devices and empower healthcare professionals to identify patterns, predict necessary outcomes, and make suitable decisions on patient care.

For instance, certain wearables use ML algorithms, especially for chronic diseases such as mental health issues, cardiovascular issues, and diabetes, by measuring heart rate, oxygen rate, and blood glucose meters. By detecting these data patterns, physicians can provide early intervention, take a closer look at patients’s vitals, and make decisions.

Recognizing Human Activity with Deep Learning Algorithms

Deep learning (DL) algorithms are implemented in wearables as multi-layered artificial neural networks (ANN) to identify intricate patterns and find relationships within massive datasets. To develop a high-performance computing platform for wearables, numerous DL frameworks are created to recognize human activities such as ECG data, muscle and bone movement, symptoms of epilepsy, and early signs of sleep apnea. The DL framework in the wearables learns the symptoms and signs automatically to provide quick solutions.

However, the only limitation of the DL algorithms in wearable technology is the need for constant training and standardized data collection and analysis to ensure high-quality data.

To Know More, Read Full Article @ https://ai-techpark.com/ai-powered-wearables-in-healthcare/

Read Related Articles:

Cloud Computing Chronicles

Future of QA Engineering

Ryan Welsh, Chief Executive Officer of Kyndi – AITech Interview

Explainability is crucial in AI applications. How does Kyndi ensure that the answers provided by its platform are explainable and transparent to users?

Explainability is a key Kyndi differentiator and enterprise users generally view this capability as critical to their brand as well as necessary to meet regulatory requirements in certain industries like the pharmaceutical and financial services sectors.

Kyndi uniquely allows users to see the specific sentences that feed the resulting generated summary produced by GenAI. Additionally, we further enable them to click on each source link to get to the specific passage rather than just linking to the entire document, so they can read additional context directly. Since users can see the sources of every generated summary, they can gain trust in both the answers and the organization to provide relevant information. This capability directly contrasts with ChatGPT and other GenAI solutions, which do not provide any sources or have the ability to utilize only relevant information to generate summaries. While some vendors may technically provide visibility into the sources, there will be so many to consider that it would render the information impractical to use.

Generative AI and next-generation search are evolving rapidly. What trends do you foresee in this space over the next few years?

The key trend in the short term is that many organizations were initially swept up in the hype of GenAI and then witnessed issues such as inaccuracy via hallucinations, the difficulty in interpreting and incorporating domain-specific information, explainability, and security challenges with proprietary information.

The emerging trend that organizations are starting to understand is that the only way to enable trustworthy GenAI is to implement an elegant solution that combines LLMs, vector databases, semantic data models, and GenAI technologies seamlessly to deliver direct and accurate answers users can trust and use right away. As organizations realize that it is possible to leverage their trusted enterprise content today, they will deploy GenAI solutions sooner and with more confidence rather than continuing their wait-and-see stance.

How do you think Kyndi is positioned to adapt and thrive in the ever-changing landscape of AI and search technology?

Kyndi seems to be in the right place at the right time. ChatGPT has shown the world what is possible and opened a lot of eyes to new ways of doing business. But that doesn’t mean that all solutions are enterprise ready as OpenAI openly admits that it is inaccurate too often to be usable by organizations. Kyndi has been working on this problem for 8 years and has a production-ready solution that addresses the problems of hallucinations, adding domain-specific information, explainability, and security today.

In fact, Kyndi is one of a few vendors offering an end-to-end complete solution that integrates language embeddings, LLM, vector databases, semantic data models, and GenAI on the same platform, allowing enterprises to get to production 9x faster than other alternative approaches. As organizations compare Kyndi to other options, they are seeing that the possibilities suggested by the release of ChatGPT are actually achievable right now.

To Know More, Read Full Interview @ https://ai-techpark.com/aitech-interview-with-ryan-welsh-ceo-of-kyndi/

Read Related Articles:

Diversity and Inclusivity in AI

Guide to the Digital Twin Technology

Ulf Zetterberg, Co-CEO of Sinequa, was interviewed by AITech.

Kindly brief us about yourself and your role as the Co-CEO at Sinequa.

I’m a serial entrepreneur, business developer and investor inspired by technology that improves the way we work. I’m passionate about human-augmented technologies like AI and machine learning that elevate human productivity and intelligence, rather than replace humans. In 2010, I co-founded Seal Software, a contract analytics company that was the first to use an AI-powered platform to add intelligence, automation, and visualization capabilities to contract data management. During my tenure, I oversaw the company’s fiscal growth and stability, which led to the acquisition of Seal by DocuSign in May 2020. I later served as President and Chief Revenue Officer of Time is Ltd., a provider of a productivity analytics SaaS platform. I joined Sinequa’s board of directors in March 2021, providing strategic planning and oversight during a time of rapid European expansion. With Sinequa’s fast growth, my role also expanded. So, in January 2023, I joined Alexander Bilger – who has successfully served as Sinequa president and CEO since 2005, in a shared leadership role as Co-CEO with the aim to further accelerate Sinequa’s ambitious global growth. Today there is so much innovation happening around the confluence of AI and enterprise search. I can’t imagine a more exciting space right now, and especially with Sinequa as a leading innovator.

In your opinion, how important is it to augment AI and ML in a way that they can be utilized to their fullest potential and not be a substitute for human skills?

We are experiencing a revolution in what can be done with AI, but it’s not going to make humans obsolete. Humans innately seek ways to make their lives easier and therefore tend to trust automation if it simplifies something. But AI isn’t perfect; for all its capabilities, it still makes mistakes. The more complex and nuanced the situation, the more likely AI is to fail, and those are often the situations that are the most critical. So it is important that we don’t rely on AI to automate everything, but use it to augment human ability, and rely on humans to ensure that the right information is being used to drive the right outcomes.

How important is it to leverage the power of AI in order to boost business performance?

I’m confident that AI is going to very quickly become a key differentiator in everything we do. Being able to use AI effectively will be a competitive advantage; not using AI will be a weakness. Perhaps you’ve heard the saying, “AI isn’t going to replace your job. But someone using AI will.” That is a new era that we are entering, and the same holds true for businesses. Those who find how to apply AI in new and creative ways to improve their business – even in the most mundane of areas – are going to create competitive advantages. I believe it’s going to be less and less about the technology and capability of the AI itself, but rather in how the AI is applied. ChatGPT is just the beginning.

Please brief our audience about the emerging trends of the new generation and how you plan to fulfill the dynamic needs of the AI-ML infrastructure.

To Know More, Visit @ https://ai-techpark.com/aitech-interview-with-ulf-zetterberg/ 

Visit AITechPark For Industry Updates

seers cmp badge