Synthetic Data: The Unsung Hero of Machine Learning

The first fundamental of Artificial Intelligence is data, with the Machine Learning models that feed on the continuously growing collections of data of different types. However, as far as it is a very significant source of information, it can be fraught with problems such as privacy limitations, biases, and data scarcity. This is beneficial in removing the mentioned above hurdles to bring synthetic data as a revolutionary solution in the world of AI.

What is Synthetic Data?

Synthetic data can be defined as data that is not acquired through actual occurrences or interactions but rather created fake data. It is specifically intended to mimic the characteristics, behaviors and organizations of actual data without copying them from actual observations. Although there exist a myriad of approaches to generating synthetic data, its generation might use simple rule-based systems or even more complicated methods, such as Machine Learning based on GANs. It is aimed at creating datasets which are as close as possible to real data, yet not causing the problems connected with using actual data.

In addition to being affordable, synthetic data is flexible and can, therefore, be applied at any scale. It enables organizations to produce significant amounts of data for developing or modeling systems or to train artificial intelligence especially when actual data is scarce, expensive or difficult to source. In addition, it is stated that synthetic data can effectively eliminate privacy related issues in fields like health and finance, as it is not based on any real information, thus may be considered as a powerful tool for data-related projects. It also helps increase the model’s ability to handle various situations since the machine learning model encounters many different situations.

Why is Synthetic Data a Game-Changer?

Synthetic data calls for the alteration of traditional methods used in industries to undertake data-driven projects due to the various advantages that the use of synthetic data avails. With an increasing number of big, diverse, and high-quality datasets needed, synthetic data becomes one of the solutions to the real-world data gathering process, which can be costly, time-consuming, or/and unethical.  This artificial data is created in a closed environment and means that data scientists and organisations have the possibility to construct datasets which correspond to their needs.

Synthetic data is an extremely valuable data product for any organization that wants to adapt to the changing landscape of data usage. It not only address practical problems like data unavailability and affordability but also flexibility, conforming to ethical standards, and model resilience. With a rising pace of technology advancements, there is a possibility of synthetic data becoming integral to building better, efficient, and responsible AI & ML models.

To Know More, Read Full Article @ https://ai-techpark.com/synthetic-data-in-machine-learning/

Related Articles -

Optimizing Data Governance and Lineage

Data Trends IT Professionals Need in 2024

Trending Category - Mobile Fitness/Health Apps/ Fitness wearables

Top Four Data Trends IT Professionals Need to Be Aware of in 2024

2023 was a terrific year in the IT industry, but 2024 is set to bring some exciting and groundbreaking developments that will help IT professionals and data scientists develop innovative software and tools to strive in the competitive landscape.

The most recent technological advancement in the data landscape is quite commendable. In 2024, IT enterprises will be heavily impacted, as data is the new oil that can transform any business and reshape the traditional process of analyzing, visualizing, and making data-driven decisions.

As IT enterprises grapple with the data deluge, they often find themselves at an intersection of technological innovation, ethical considerations, and the need for actionable solutions.

In today’s exclusive AI Tech Park article, we will focus on gearing up IT professionals and data scientists to understand the data trends they can expect in 2024.

The Era of the Data Renaissance

The phrase “data is the new oil” was stated in 2006 by British data scientist Clive Humby. The one big difference between data and oil is that oil is a nonrenewable energy, and data can be renewed and reused in an infinite number of ways.

Three decades ago, one of the main challenges that IT enterprises faced was the scarcity of data. However, with time, the main challenge for most IT businesses was having a plethora of data.

With such a volume of data, enterprises struggle with how to use the data, where to implement it, when they need it, and most importantly, how to store it. The traditional database management systems (DMS) failed to tackle the new data sets, which made data professionals realize the importance of cloud storage, which is efficient in handling numerous types of data and quite cost-efficient compared to DMS.

As we stand at the crossroads of a data renaissance, the year 2024 heralds an important role in the data analytic landscape, where data analytics is no longer a tool for data-driven decision-making but a driving force to push greater efficiency, innovation, real-time data insights, responsible AI, reinforce security, and more.

However, IT professionals and data scientists need to address the challenges and considerations of imposing data privacy, skill development, and ethical dilemmas to stay compliant with this evolving regulatory landscape.

Data Democratization

Data democratization has been a growing trend for the past few years, but the increased usage of AI and machine learning (ML) tools has rekindled a new horizon for this trend. With data democratization, every employee in an IT organization will have access to the data to make data-driven decisions for a seamless business process. However, to get full access to data, IT leaders need to provide in-house training on data literacy to familiarize them with the principles and techniques of working with data.

To Know More, Read Full Article @ https://ai-techpark.com/top-4-data-trends-it-professionals-need-in-2024/ 

Read Related Articles:

Blockchain, AI, and Quantum Computing

Ethics in the Era of Generative AI

seers cmp badge